
 Magnetic brane solutions in AdS

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

JHEP10(2009)088

(http://iopscience.iop.org/1126-6708/2009/10/088)

Download details:

IP Address: 80.92.225.132

The article was downloaded on 01/04/2010 at 13:36

Please note that terms and conditions apply.

The Table of Contents and more related content is available

Home Search Collections Journals About Contact us My IOPscience

http://www.iop.org/Terms_&_Conditions
http://iopscience.iop.org/1126-6708/2009/10
http://iopscience.iop.org/1126-6708/2009/10/088/related
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J
H
E
P
1
0
(
2
0
0
9
)
0
8
8

Published by IOP Publishing for SISSA

Received: October 7, 2009

Accepted: October 13, 2009

Published: October 28, 2009

Magnetic brane solutions in AdS

Eric D’Hokera and Per Krausa,b

aDepartment of Physics and Astronomy, UCLA,

Los Angeles, CA 90095-1547, U.S.A.
bKavli Institute for Theoretical Physics, UCSB,

Santa Barbara, CA 93106, U.S.A.

E-mail: dhoker@physics.ucla.edu, pkraus@ucla.edu

Abstract: We construct asymptotically AdS5 solutions of Einstein-Maxwell theory dual

to N = 4 SYM theory on R
3,1 in the presence of a background magnetic field. The solutions

interpolate between AdS5 and a near horizon AdS3 × T 2. The central charge of the near

horizon region, and hence low temperature entropy of the solution, is found to be
√

4
3

times that of free N = 4 SYM theory. The entropy vanishes at zero temperature. We also

present the generalization of these solutions to arbitrary spacetime dimensionality.

Keywords: Black Holes in String Theory, AdS-CFT Correspondence

ArXiv ePrint: 0908.3875

c© SISSA 2009 doi:10.1088/1126-6708/2009/10/088

mailto:dhoker@physics.ucla.edu
mailto:pkraus@ucla.edu
http://arxiv.org/abs/0908.3875
http://dx.doi.org/10.1088/1126-6708/2009/10/088


J
H
E
P
1
0
(
2
0
0
9
)
0
8
8

Contents

1 Introduction 1

2 Magnetic brane in AdS5 2

2.1 Zero temperature solutions 4

2.2 Finite temperature solutions 4

3 Comparison with N = 4 Super Yang-Mills 6

4 Generalization to AdSd+1 9

4.1 d odd 9

4.2 d even 10

5 Discussion 11

A Towards exact solutions 12

A.1 The large B case 12

A.2 The boost-invariant case 13

1 Introduction

In the AdS/CFT correspondence boundary gauge theories in the presence of background

electromagnetic fields can be studied by imposing suitable boundary conditions on gauge

fields in the bulk of AdS. By turning on such fields one can compute the electrical conduc-

tivity of the gauge theory, study its response to magnetic fields, and so forth.

The solution for a black brane in AdS4 with a magnetic field is easily found and has

many AdS/CFT applications (e.g [1]–[11]) to the study of 2+1 gauge theories in magnetic

fields. It is clearly of interest to have such solutions in the AdS5 case as well. For instance,

as recently emphasized in [12], strongly coupled gauge theories in magnetic fields arise at

RHIC, and one would like to be able to use holography to study the effect of the magnetic

field. To the extent that 3 + 1 dimensional condensed matter systems can be modeled by

AdS/CFT, the ability to turn on magnetic fields provides a valuable probe of the system

with a clear physical meaning.

Given this motivation, in this paper we find magnetic brane solutions to five dimen-

sional Einstein-Maxwell theory with a negative cosmological constant. The most important

properties of these solutions can be determined analytically, although some numerical work

is needed to capture all the details.

The solutions that we find are related to, but distinct from, previously studied “AdS5

black string” solutions (and their higher dimensional cousins) [13]–[18], as well as the

solutions of Maldecena and Nunez [19]. In these papers, two of the spatial direction are
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taken to be compact (usually S2 or H2) and the magnetic field strength is taken to be

proportional to the curvature two-form, as is in fact required by supersymmetry. On the

other hand, we will be looking for solutions with a nonzero field strength on a flat boundary

metric. Our solutions are thus intrinsically non-supersymmetric.

Taking the spatial boundary directions to be a compact torus, our solutions interpolate

between AdS3 × T 2 at small r and AdS5 at large r. At finite temperature the AdS3 factor

is replaced by a BTZ black hole [20]. The black brane entropy density correspondingly

interpolates between a linear T dependence at low temperature and a T 3 dependence at

high temperature.

We then compare our results to the thermodynamics of free N = 4 SYM theory in

an external U(1)R magnetic field. At high temperature we recover the standard result

Sgrav = 3
4SN=4. At low temperature the N = 4 theory reduces to a 1 + 1 dimensional

conformal field theory described by the fermion zero modes, with a central charge equal

to N2 times the number of units of quantized magnetic flux. The corresponding strong

coupling result can be computed in gravity from the Brown-Henneaux formula, and we

find an increase by a factor of
√

4
3 , i.e. cgrav =

√

4
3 cN=4. The low temperature entropy

computed from gravity therefore is also enhanced by this factor compared to the free N = 4

result. It is amusing that turning on a magnetic field actually improves the numerical

agreement between gravity and free N = 4 SYM, giving a relative
√

4
3 versus 3

4 .

The property that the entropy of the AdS5 magnetic brane solution vanishes at zero

temperature distinguishes it from the AdS4 case, where there is a finite entropy at ex-

tremality. In fact, this property also matches what one would expect from a free fermion

description. In the AdS4 case all spatial directions of the boundary are threaded by mag-

netic flux; there is thus a finite density of fermion zero modes per unit area, and hence a

finite entropy density.

It is straightforward to extend our considerations to arbitrary spacetime dimension.

For odd dimensional AdSd+1 spacetimes and maximal rank magnetic field, we find so-

lutions interpolating between AdS3 × T d−2 and AdSd+1, with properties very similar to

the AdS5 case. Similarly, for even dimensional AdSd+1 spacetimes the situation parallels

the AdS4 case; explicit solutions are easily found, and the solutions have a finite entropy

extremal limit.

This paper is organized as follows. In section 2 we construct magnetic brane solutions

in AdS5. In section 3 we compute the thermodynamics of free N = 4 SYM theory in a

background magnetic field. In section 4 we generalize to arbitrary spacetime dimension.

Some conclusions are given in section 5. The appendix details our progress in looking for

analytic solutions of the AdS5 equations.

2 Magnetic brane in AdS5

The action of five-dimensional Einstein-Maxwell theory with a negative cosmological con-

stant is1

S = − 1

16πG5

∫

d5x
√−g

(

R+ FMNFMN − 12

L2

)

+ Sbndy . (2.1)

1Conventions: Rλ
µνκ = ∂κΓ

λ
µν − ∂νΓ

λ
µκ + ΓηµνΓ

λ
κη − ΓηµκΓ

λ
νη and Rµν = Rλ

µλν .
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The boundary terms include the Gibbons-Hawking term as well as other contributions

necessary for a well posed variational principle [21, 22]; their explicit forms will not be

needed here. Along with the Bianchi identity, the field equations are

RMN =
4

L2
gMN +

1

3
FPQFPQgMN − 2FMPF

P
N (2.2)

∇MFMN = 0 .

We henceforth set the AdS radius to unity: L = 1.

Were we to add to the action the Chern-Simons term

SCS =
k

16πG5

∫

A ∧ F ∧ F , k =
8

3
√

3
(2.3)

then our action would correspond to the bosonic part ofD = 5 minimal gauged supergravity

(e.g. [23]). The Chern-Simons term makes no contribution to the solutions considered in

this paper, but will be useful for fixing the normalization of the gauge field.

We are interested in solutions asymptotic to AdS5 with a magnetic field tangent to

the boundary directions. The field strength and metric can be taken to be invariant under

spacetime translations, rotations in the x1,2 plane, and time reversal. A general ansatz

consistent with the symmetries is

ds2 = −U(r)dt2 +
dr2

U(r)
+ e2V (r)

(

(dx1)2 + (dx2)2
)

+ e2W (r)dy2 (2.4)

F = Bdx1 ∧ dx2

The Maxwell equation is automatically satisfied, and the Einstein equations reduce to

U(V ′′ −W ′′) +
(

U ′ + U(2V ′ +W ′)
)

(V ′ −W ′) = −2B2e−4V (2.5)

2V ′′ +W ′′ + 2(V ′)2 + (W ′)2 = 0

1

2
U ′′ +

1

2
U ′(2V ′ +W ′) = 4 +

2

3
B2e−4V

2U ′V ′ + U ′W ′ + 2U(V ′)2 + 4UV ′W ′ = 12 − 2e−4V B2

With r as the evolution parameter, the final equation represents a constraint on initial

data. Once imposed on the initial data, it is automatically satisfied on the full solution by

virtue of the three dynamical equations. Alternatively, one can omit one of the dynamical

equations, since it will be implied by the remaining dynamical equations together with the

derivative of the constraint equation.

With B = 0, a solution to these equations is AdS5, represented by U = e2V = e2W = r2.

For nonzero B an exact solution is given by U = 3(r2 − r2+), e2V = B/
√

3, e2W = 3r2.

This solution represents the product of a BTZ black hole and T 2 (we are taking the x1,2

directions to be compact),

ds2 = −3(r2 − r2+)dt2 +
dr2

3(r2 − r2+)
+

B√
3

(

(dx1)2 + (dx2)2
)

+ 3r2dy2 . (2.6)
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Our goal is to find solutions that interpolate between (2.6) at small r and AdS5 at large

r. From the boundary field theory point of view this represents an RG flow between a

D = 3 + 1 CFT at short distance and a D = 1 + 1 CFT at long distance. As we discuss in

the next section, this is the expected behavior of N = 4 SYM in the presence of uniform

external magnetic flux.

The central charge of the near horizon AdS3 region can be computed from the Brown-

Henneaux formula [24], c = 3l/(2G3). The AdS3 radius is l = 1/
√

3, Taking x1,2 to be

compact with coordinate volume V2, the D = 3 Newton constant is G3 =
√

3G5/(BV2).

Using the AdS5/CFT4 relation G5 = π/(2N2), we find

c =
N2BV2

π
=

√

4

3

(BV2

2π

)

N2 . (2.7)

In the last step we have written the result in a form convenient for comparison with N = 4

SYM theory, where the rescaled magnetic field is B =
√

3B. The combination BV2/(2π)

will be identified with the number of quantized units of magnetic flux. Knowledge of the

central charge (2.7) will be sufficient information to deduce the low temperature behavior

of the black hole entropy.

We have not succeeded in solving (2.5) analytically to find the interpolating solutions,

but numerical integration is straightforward. The procedure is a bit different depending

on whether the temperature is zero or nonzero.

2.1 Zero temperature solutions

At zero temperature we can look for solutions preserving Lorentz invariance in the (t, y)

directions, which corresponds to setting U = e2W . The system of equations (2.5) reduces to

2V ′′ +W ′′ + 2(V ′)2 + (W ′)2 = 0 (2.8)

V ′2 +W ′2 + 4V ′W ′ = 6e−2W − e−4V−2WB2 .

Note that B can be absorbed by a shift of V . Starting from the small r behavior e2V =

B/
√

3 and e2W = 3r2, we numerically integrate out and find a solution with large r behavior

e2V = vr2 and e2W = r2. Numerically, we find v ≈ 1.87B. The result is a smooth zero

temperature solution interpolating between a near horizon AdS3 × T 2 and an asymptotic

AdS5. There is a unique such solution, inasmuch as the value of B can be absorbed by a

rescaling of x1,2.

2.2 Finite temperature solutions

Now we turn to the finite temperature solutions. The solutions carry a nonzero temperature

and magnetic field; however, using the freedom to rescale coordinates there is really only

a one parameter family of solutions, which we can think of as being parameterized by the

dimensionless combination T√
B

. The numerical analysis proceeds as follows. We rescale r

such that the horizon is at r = 1; i.e. U(1) = 0. By rescaling t we can take U ′(1) = 1,

which sets the temperature to a fixed value, leaving B as the free parameter. Further, by

rescaling x1,2 and y we can take V (1) = W (1) = 0. With these conditions, the first and
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third equations of (2.5) give us the initial data V ′(1) = 4− 4
3b

2 and W ′(1) = 4+ 2
3b

2, where

we are writing b for the value of the magnetic field in these coordinates. We then integrate

out to find solutions with asymptotic behavior U = r2, e2V = vr2, and e2W = wr2, where v

and w are functions of the free parameter b, to be computed numerically. We find smooth

solutions for all values of b, thus exhibiting the existence of solutions interpolating between

a near horizon BTZ ×T 2 and an asymptotic AdS5.

The solution has a conformal boundary metric ds2 = −dt2+v
(

(dx1)2+(dx2)2
)

+wdy2.

To put this in standard form we can introduce the coordinates x̃1,2 =
√
vx1,2 and ỹ =

√
wy.

The Hawking temperature, determined from the imaginary time periodicity, is T = 1/(4π).

Since the field strength takes the form

F = bdx1 ∧ dx2 =
b

v
dx̃1 ∧ dx̃2 , (2.9)

it is B = b/v that represents the physical magnetic field. Similarly, the physical entropy

density is

S

V
=

1

4G5

1

v
√
w
. (2.10)

It is most illuminating to display the numerical results as a plot of the entropy density

versus temperature. Since it is only dimensionless quantities that are meaningful, we divide

each by the appropriate power of the magnetic field B. Or rather since it is B =
√

3B

that will appear naturally on the field theory side, we divide by powers of B. For the

temperature, we thus compute

T√
B

=
3−1/4

4π

√

v

b
. (2.11)

For the entropy density, using G5 = π
2N2 and dividing through by N2 we compute

S

V N2B3/2
=

3−3/4

2π

√

v

b3w
. (2.12)

The numerical results, together with those of the field theory computation discussed

in the next section, are shown in figure 1.

The behavior of the black brane entropy at high and low temperatures can be deter-

mined analytically. At high temperatures the magnetic field becomes a subleading effect,

and we recover the standard result for finite temperature D3-branes, namely a T 3 depen-

dence with the entropy being 3/4 of that obtained from the free field limit of N = 4 SYM

theory with gauge group U(N).

At low temperature we have a BTZ black hole. The entropy of a BTZ black hole

(or more generally any system with the symmetries of a D = 1 + 1 CFT) is given by

S = π
3 cTLy, where we are taking the y coordinate to be compact, and where in general

c is the average of the left and right moving central charges. One might be worried that

since gyy is a nontrivial function of r, the relevant size of the y circle differs depending

on whether we measure it in the BTZ region or at infinity in the AdS5 region. The same

– 5 –
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Figure 1. Plot of entropy versus temperature for gravity (red) and free N = 4 SYM theory (blue).

The inset shows the low temperature behavior. At low temperature the entropies are linear in T ,

with Sgrav =
√

4
3
SN=4. At high temperature the entropies are cubic in T , with Sgrav = 3

4
SN=4.

Gravity gives the larger entropy at low temperature by a factor of
√

4
3
; as the temperature is raised

the curves cross, and then asymptotically the gravitational entropy is lower by a factor of 3
4
.

is true of the time coordinate, which determines the temperature. Fortunately, due to

the zero temperature condition U = e2W , the two possible rescalings cancel, so that the

product TLy is the same in the BTZ region as at infinity. Using the result (2.7) the low

temperature entropy becomes

S

V
=

N2

3
√

3
BT . (2.13)

We have verified that (2.13) indeed matches the low temperature numerics, as can be seen

from the inset in figure 1.

The numerics show that the entropy smoothly interpolates between the linear and

cubic in T dependence as the solution interpolates between a BTZ black hole and a five

dimensional black brane.

3 Comparison with N = 4 Super Yang-Mills

We now work out the entropy of the free field limit of N = 4 SYM theory in an external

magnetic field in order to compare with the black brane entropy. Our first task is to fix the

normalization of the field theory magnetic field relative to that used on the gravity side.

– 6 –
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We should first state more specifically which magnetic field is under consideration. On

the gravity side, we stated that if we include the term (2.3) then the action corresponds

to minimal gauged supergravity. This implies that the bulk gauge field appears on the

boundary as an external field coupled to the R-symmetry current of the field theory. Here

we are thinking of the N = 4 theory in N = 1 terms, with a U(1) R-symmetry. The natural

normalization in the field theory is to assign the gaugino R-charge 1. In this normalization,

the field content of the N = 4 theory is as follows: we have N2 Weyl spinors of charge

1 (the gauginos); 3N2 Weyl spinors of charge −1
3 (the fermions in the chiral multiplets);

3N2 complex scalar fields of charge 2
3 (the scalars in the chiral multiplets); and N2 vector

fields of charge 0 (the gauge fields).

To fix the relative normalizations we compare the anomalous variations under gauge

transformations of the R-symmetry gauge fields, δA = dΛ̃. On the field theory side we use

the standard result from the triangle anomaly,

δSeff =
1

24π2
trQ3

∫

Λ̃F ∧ F , (3.1)

where the trace is over the spectrum of Weyl fermions. In our case, trQ3 = 8N2

9 , and so

δSeff =
N2

27π2

∫

Λ̃F ∧ F . (3.2)

On the gravity side the anomalous variation comes from the Chern-Simons term (2.3),

whose coefficient was fixed by supersymmetry. This gives

δS =
k

16πG5

∫

ΛF ∧ F =
N2

33/2π2

∫

ΛF ∧ F . (3.3)

Comparing, we find the relation F =
√

3F , which is the result that we used in the previ-

ous section.

We now compute the partition function, Z = Tre−βH , of N = 4 SYM theory at finite

temperature and magnetic field, at zero coupling. From the partition function we extract

the entropy using the standard formula S = (1 − β ∂
∂β ) lnZ, and then compare with the

black brane entropy. For B = 0 it is well known that the two entropies only differ by a

factor of 3
4 , even though the field theory and gravity computations are valid in the non-

overlapping regimes of small and large ’t Hooft coupling. It is interesting to extend this

comparison to nonzero magnetic field; as we’ll see, this actually improves the agreement

between the entropies.

In the free field limit, to compute Z we only need to know the spectrum of single particle

excitations in the presence of a magnetic field pointing along the y direction, which are given

by relativistic Landau levels. First consider a charge qφ scalar field. Solving DµDµφ = 0,

we find the energies

E = ±
√

p2
y + (2n + 1)|qφB| , n = 0, 1, 2, . . . (3.4)

As usual, the branch with E < 0 corresponds to charge −qφ antiparticles with positive

energy. Each mode has a degeneracy corresponding to the number of units of magnetic
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flux, |qφB|V2/(2π), where V2 denotes the area in the x1,2 plane transverse to ~B. Summing

over both the particles and anti-particles, the scalar partition function is

lnZφ(qφ) = −2
|qφB|V2

2π

∞
∑

n=0

Ly
2π

∫ ∞

−∞
dpy ln

(

1 − e−β
√
p2y+|qφB|(2n+1)

)

. (3.5)

Next, consider a charge qψ Weyl spinor. We solve γµDµψ = 0 subject to γ5ψ = ψ. This

yields the following spectrum of energies. First, there are solutions obeying E2 > p2
y with

E = ±
√

p2
y + 2|qψB|n , n = 1, 2, . . . (3.6)

Second, there are solutions with E2 = p2
y. For qψB > 0 these obey E = py; for qψB < 0

they obey E = −py. These are zero modes of the two-dimensional Dirac operator, whose

existence is mandated by the index theorem. The sign of the momentum of the physical

n = 0 excitations is correlated with the sign of qψ. All of the solutions have degeneracy

|qψB|V2/(2π). The partition function of a charge qψ Weyl spinor is thus2

lnZψ(qψ) =
|qψB|V2

2π

∞
∑

n=0

∑

α=±1

Ly
2π

∫ ∞

−∞
dpy ln

(

1 + e−β
√
p2y+|qψB|(2n+1−α)

)

. (3.7)

The α = 1 part includes the zero mode contribution.

The gauge fields are neutral, and have partition function

lnZV = −2
V2Ly
(2π)3

∫

d3p ln
(

1 − e−β|~p|
)

. (3.8)

The total partition function corresponding to the field content of N = 4 SYM is

lnZ = N2
(

3 lnZφ(2/3) + lnZψ(1) + 3 lnZψ(−1/3) + lnZV

)

. (3.9)

In the high temperature limit the sums over n can be replaced by integrals, and we

recover the standard result for the entropy,

S

V
=

2π2

45

(

gb +
7

8
gf

)

T 3 (3.10)

where gb,f denote the number of bosonic/fermionic helicity states. In the present context,

gb = gf = 8N2.

In the low temperature limit the partition function is dominated by the fermionic zero

mode contribution. From (3.7) we see that each D = 3+1 fermion contributes the same as

|qψB|V2/(2π) fermions in D = 1 + 1, with corresponding central charge c = |qψB|V2/(4π).

The low temperature entropy is thus

S ≈ π

3
cLyT , c =

∑

ψ

1

2

|qψB|V2

2π
=

|B|V2

2π
N2 . (3.11)

2For a given sign of qψ the zero mode fermions really have a definite sign of py, but to simplify (3.7) we

replace the integration over anti-particles of py > 0 (say) by the equivalent integration over py < 0.
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Comparing with (2.7) we see that the central charges, and hence the low temperature

entropies, differ by a factor of
√

4
3 . Somewhat surprisingly, the strong coupling result

coming from gravity gives the larger central charge, in contrast to the result that at high

temperature the gravitational entropy is less by a factor of 3/4 compared to free N = 4

SYM theory.

For intermediate values of the temperature we evaluate the sums and integrals numeri-

cally, and obtain the result displayed in figure 1. Both the gravity and field theory entropies

smoothly interpolate between a linear and cubic temperature dependence, corresponding

to the fact that both are interpolating between D = 1 + 1 and D = 3 + 1 CFTs.

4 Generalization to AdSd+1

In this section we discuss black brane solutions with magnetic fields in arbitrary dimensions.

There are two basic cases, depending on whether the spacetime dimensionality is odd or

even. The odd dimensional case, with maximal rank B-field, is analogous to the solutions

constructed in section 2. The solutions interpolate between a near horizon AdS3 and

an asymptotic AdSd+1. The solutions in the even dimensional case are analogous to the

magnetic black brane in AdS4 (see [25] for related solutions). These black branes have

an extremal limit with nonzero entropy density, and a corresponding near horizon AdS2

factor. For both odd and even dimensions, the low temperature behavior of the entropy

matches that of massless free fermions in magnetic fields.

More generally, by considering B-fields of less than maximal rank, one can have solu-

tions interpolating between a near horizon AdSd+1−2r and an asymptotic AdSd+1, where r

is a positive integer.

In d+ 1 dimensions the Einstein-Maxwell equations are

RMN =
d

L2
gMN +

1

d− 1
FPQFPQgMN − 2FMPF

P
N (4.1)

∇MFMN = 0

There is also the Bianchi identity. For clarity, we restore the L-dependence in this section.

4.1 d odd

We choose a field strength of maximal rank. By rotating and scaling coordinates we can

always take F12 = F34 = . . . = B. The metric ansatz is

ds2 = −U(r)dt2 +
dr2

U(r)
+ e2V (r)

(

(dx1)2 + · · · + (dxd−1)2
)

. (4.2)

The Einstein equations become

U ′′ + (d− 1)U ′V ′ =
2d

L2
+ 2B2e−4V (4.3)

U ′′ + 2(d− 1)

(

UV ′′ + UV ′2 +
U ′V ′

2

)

=
2d

L2
+ 2B2e−4V

UV ′′ + U ′V ′ + (d− 1)UV ′2 =
d

L2
−B2e−4V

– 9 –
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A solution is given by

U =
r2

L2
+

(

L4

4 − d

)

B2

r2
− M

rd−2
, e2V =

r2

L2
. (4.4)

This is a magnetic black brane, with a horizon at U(r+) = 0.

The Hawking temperature is

T =
1

4π
U ′(r+) =

1

4π

(

dr+
L2

− L4B2

r3+

)

. (4.5)

The extremal limit is thus r2+ = L3B√
d

.

The entropy density is

S

V
=

1

4Gd+1

(r+
L

)d−1
(4.6)

which at extremality becomes

S

V
=

1

4Gd+1

(

LB√
d

)
d−1

2

. (4.7)

This entropy is proportional to the number of zero modes of massless fermions on T d−1 in

the presence of magnetic flux.

The energy density can be worked out by integrating E =
∫

TdS at fixed B, and gives

E

V
=

(d− 1)

16πGd+1

M

Ld−1
. (4.8)

At extremality this becomes

E

V
=

1

4πGd+1

(

d− 1

4 − d

)(

LB√
d

)
d
2 1

L
. (4.9)

Surprisingly, this is negative for d > 4. This does not imply an instability in the theory,

since it is not meaningful to compare this energy against that for B = 0, as the geometries

have different asymptotics.

4.2 d even

We let the field strength fill the directions x1, x2, · · · , xd−2 and denote the “left over” spatial

direction by y. By rotating and scaling coordinates we can always take F12 = F34 = . . . = B

and Fiy = 0. The metric ansatz is

ds2 = −U(r)dt2 +
dr2

U(r)
+ e2V (r)

(

(dx1)2 + · · · + (dxd−2)2
)

+ e2W (r)dy2 . (4.10)

The Einstein equations can be reduced to

U(V ′′ −W ′′) +

(

U ′ + U
(

(d− 2)V ′ +W ′
)

)

(V ′ −W ′) = −2B2e−4V (4.11)

(d− 2)(V ′′ + V ′2) +W ′′ +W ′2 = 0

(d− 2)

(

U ′V ′ + 2UV ′W ′ + (d− 3)UV ′2
)

+ U ′W ′ =
d(d− 1)

L2
− (d− 2)B2e−4V

– 10 –
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These equations admit a BTZ×T d−2 solution

ds2 = −(d− 1)

(

r2 − r2+
L2

)

dt2 +
1

(d− 1)

(

L2

r2 − r2+

)

dr2 + (d− 1)
r2

L2
dy2 (4.12)

+
LB√
d− 1

(

(dx1)2 + · · · (dxd−2)2
)

.

The AdS3 radius is l = L√
d−1

. The D = 3 Newton constant is

1

G3
=

(

LB√
d− 1

)
d−2

2

Vd−2
1

Gd+1
(4.13)

where Vd−2 denotes the coordinate volume. The Brown-Henneaux central charge is

c =
3l

2G3
=

3

2

1√
d− 1

(

B√
d− 1L

)
d−2

2

Vd−2
Ld−1

Gd+1
(4.14)

This central charge is proportional to that which would arise from massless fermions on

T d−2 in the presence of magnetic flux. The low temperature entropy is

S ≈ π

3
cTLy =

π

2

(

B√
d− 1L

)
d−2

2 Ld−1

Gd+1

T√
d− 1

Vd−1 . (4.15)

The interpolating solutions can be found by numerical integration of (4.11).

5 Discussion

In this work we have constructed magnetic brane solutions in AdS, using a combination

of analytical and numerical methods. We mainly focussed on the AdS5 case, and noted

that the black brane thermodynamics agrees surprisingly well with that of free N = 4

SYM theory. Although we framed our discussion in terms of N = 4 SYM theory, it

is worth noting that our solutions apply equally well to the much larger class of N = 1

superconformal field theories that have a gravity dual described by Einstein-Maxwell theory

with a negative cosmological constant. As shown in [26–28] this class includes all such

theories with a dual IIB or M-theory description, as all these theories admit a consistent

truncation to D = 5 minimal gauged supergravity.

A natural extension of this work is to add nonzero charge and momentum density to

these solutions [29]. This leads to AdS3 being replaced by a charged, rotating, BTZ black

hole. The addition of a charge density leads to a nonzero current flow; this can be seen

in N = 4 SYM theory from the fact that there is a left-right asymmetry in the effective

D = 1 + 1 CFT. This is in turn related to the triangle anomaly, and presumably gives a

microscopic explanation for some of the effects noted in [12].

It would be interesting to study the transport properties of these solutions. For that

purpose, it clearly would be desirable to have an analytic solution available, and in the

appendix we report on our efforts in that direction.
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A Towards exact solutions

It would clearly be valuable to obtain exact analytic solutions to the reduced equations (2.5)

for the general magnetic brane, and for their boost-invariant zero temperature limit in (2.8).

The knowledge of an analytic solution greatly facilitates the study, for example, of the spec-

trum and dynamics of small fluctuations. Thus far, we have not succeeded in completely

solving either one of these equations in all generality.

In this appendix, we shall present two partial analytic solutions of (2.5) and (2.8).

The first consists of the regime of large magnetic field, specifically when the B2e−4V terms

dominate the constant terms on the rhs of (2.5); this problem will be solved completely

analytically. The second consists of the zero temperature regime, where boost invariance

in the x3 direction can be assumed; this problem will be reduced, by quadratures, to the

solutions of a single first order ODE. So far, we have not succeeded in solving this remaining

ODE. In this appendix, we shall provide the derivations of these analytic results.

A.1 The large B case

When B2e−4V is large, we ignore the constant terms on the rhs of (2.5). The fourth

equation is the constraint, which is r-independent in view of the first three equations, and

may be enforced as an initial datum. Using the constraint equation, we may eliminate

the B2e−4V term from the first three equations. The resulting equations involve only the

functions u, v,w, defined by (the sign and numerical factors are for later convenience),

u ≡ −U ′/(6U) v ≡ −V ′/3 w ≡ −W ′/3 (A.1)

and not the actual functions U, V,W , and become,

u′ = 6u2 + 10uv + 5uw + 2v2 + 4vw

v′ = −2uv − 4uw + 2v2 − 5vw

w′ = 4uv + 8uw + 2v2 + 3w2 + 10vw (A.2)

In the two independent ratios u′/v′ and w′/v′, the derivative with respect to r is effectively

traded in for a derivative with respect to v. The right hand sides are homogeneous in

u, v,w of degree 0, and may be expressed solely in terms of the ratios,

α ≡ u/v β ≡ w/v (A.3)

and we obtain,

v
dα

dv
=

4α2β + 8α2 + 10αβ + 8α+ 4β + 2

−4αβ − 2α− 5β + 2

v
dβ

dv
=

4αβ2 + 8β2 + 10αβ + 4α + 8β + 2

−4αβ − 2α− 5β + 2
(A.4)

– 12 –
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Taking the ratio of these equations in turn gives an ordinary first order differential equation,

dβ

dα
=

4αβ2 + 8β2 + 10αβ + 4α+ 8β + 2

4α2β + 8α2 + 10αβ + 8α+ 4β + 2
(A.5)

Equation (A.5) may be solved by considering the ratio d(α − β)/d(α + β) = (α − β)/λ in

terms of the independent variable λ ≡ α+ β + 1. The general solution is given by,

α− β = cλ (A.6)

where c is an arbitrary real integration constant. Using this solution back into (A.4), we

derive v by quadrature, and by using (A.3), we find u and w as well,

u(λ) =
1

2
v0

{

(1 + c)λ− 1
}

λ−3/2(λ− λ+)γ+(λ− λ−)γ−

v(λ) = v0λ
−3/2(λ− λ+)γ+(λ− λ−)γ−

w(λ) =
1

2
v0

{

(1 − c)λ− 1
}

λ−3/2(λ− λ+)γ+(λ− λ−)γ− (A.7)

where v0 is a real integration constant, and the constants λ± and γ± are given by,

λ± ≡ −3 ±
√

12 − 3c2

1 − c2

γ± = ±3(c+ 3) + 3λ−1
±

4
√

12 − 3c2
(A.8)

Finally, we use (A.2) to obtain also r in terms of λ, and we find,

v0(1 − c2)r(λ) =

∫ λ

λ0

dλ′ (λ′)
1

2 (λ′ − λ+)−1−γ+(λ′ − λ−)−1−γ
− (A.9)

where λ0 is a real integration constant. For the special case of the boost invariant solution,

for which c = 0, the data work out as follows, λ± = −3 ± 2
√

3, and 4γ± = ±2
√

3 + 1.

A.2 The boost-invariant case

Boost invariance in the x3-direction requires U = 3e2W , and reduces the equations (2.5) to,

2V ′′ + 2(V ′)2 +W ′′ + (W ′)2 = 0

V ′′ −W ′′ + 2(V ′)2 − 3(W ′)2 + V ′W ′ = −2

3
B2e−4V −2W

(V ′)2 + (W ′)2 + 4V ′W ′ =
2

L2
e−2W − 1

3
B2e−4V−2W (A.10)

It is readily checked that the r-derivative of the constraint vanishes in view of the first to

equations of (A.10). Thus, the constraint may again be imposed as initial conditions. To

solve the system, we concentrate of the first two equations of (A.10).

Taking the derivative of the second equation, and eliminating the B2e−4V −2W between

the original equation and its derivative gives an equation that only involves V ′ and W ′ and

its derivatives, but not the original fields V,W . We introduce again the notations of (A.1)

– 13 –
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for v and w, eliminate w′′ using the derivative of the first equation in (A.10), so that the

final two independent equations become,

2v′ + w′ = 6v2 + 3w2

−v′′ + 8vv′ − 4ww′ + v′w + vw′ = 3(4v + 2w)(−v′ + 4v2 − 2w2 + vw) (A.11)

To render the system first order in derivatives on v, we introduce an auxiliary variable

y, and postulate that the first derivatives of v and y be quadratic functions of v,w, y.

Clearly, y is not unique, but is defined up to linear transformations on y of the form,

y → sy+ av+ bw, for s, a, b arbitrary real parameters. One readily establishes that such a

system is given by,

v′ = 3v2 − y(v − w)

w′ = 3w2 + 2y(v − w)

y′ = 6v2 + 3y2 + 21vw + 9vy + 12wy (A.12)

One verifies that, if w, v, y satisfy (A.12), then v,w satisfy (A.11). The AdS5 solution has

v = w = 1/(3r) and y ∼ 1/r, while the AdS3 solution has v = y = 0 and w = 1/(3r).

The system may be reduced to a single first order ordinary ODE by taking pairwise

ratios v′/w′ and y′/w′, and using the ratios α ≡ v/w and β ≡ y/w. The resulting equa-

tions are,

w
dα

dw
=

(α− 1)(3α − β − 2αβ)

3 + 2β(α− 1)

w
dβ

dw
=

6α2 + 5β2 + 21α + 9β + 9αβ − 2αβ2

3 + 2β(α− 1)
(A.13)

Taking the ratio, we get a single first order ODE between α and β,

dα

dβ
=

(α− 1)(3α − β − 2αβ)

6α2 + 5β2 + 21α+ 9β + 9αβ − 2αβ2
(A.14)

The solution α = 1 corresponds to AdS5, while α = β = 0 corresponds to AdS3 × T 2.

Equation (A.14) is of the Darboux type of order m = 2 according to [30], and of the

Abel second kind type according to [31]. No general solutions are known for either type

of equations, and (A.14) does not fit into any of the known categories of solvable special

cases. Either way, we have not succeeded in integrating equation (A.14) analytically.
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